OTTAWA RIVER OH

SCOTT CIENIAWSKI, USEPA GLNPO, AND MARC MILLS, USEPA ORD

Ottawa River Site Overview

Site Vicinity

Project Area

Objectives of Remediation

- Primary COC are PCBs
- Secondary COCs are PAHs and lead
- Sediment PCB concentrations and remediation goals

River Reach	Pre-Construction SWAC (µg/kg)	Post-Construction SWAC Goal (µg/kg)	Long-Term Recovery SWAC Goal (µg/kg)
Reach 4	500		
Reach 3	6,600		
Reach 2	1,000		
Reach 1	800		
Reaches 1 to 4		1,500	250

Summary of Remedy

- 1986 to 1995: landfill closures
- 1986 to present: combined sewer overflow reductions
- 1998 to 1999: early remediation of Reach 3 source tributary
- 2006 to 2010
 - 275,000 cubic yards of hydraulic dredging (Reaches 4 to 2)
 - No post-dredge cover placed
 - \$43 million construction cost

Reach 4 Remediation (RM 8.8 to 6.5)

Reach 3 Remediation (RM 6.5 to 4.9)

Reach 2 Remediation (RM 4.9 to 3.2)

Key Take-Home Messages

- Be realistic regarding recovery timeframes
- Set protective cleanup goals, but be willing to accept uncertainty in remedial approach
 - Significant benefits to be gained by getting most of the way there
 - Don't let the perfect project be the enemy of the good project
 - 5-year review process provides opportunity for adaptive management

Research to support GLNPO -

Remedy Effectiveness

Weight of Evidence Approach using Multiple Lines of Evidence

- Biological LOE assesses biological endpoints, e.g., fish reproduction, diversity of species, toxicity
- Chemical LOE measures that relate to contaminant concentrations, e.g., post-remedial surface weighted concentrations, reductions in fish tissue levels
- □ <u>Physical LOE</u> volume and mass removed, e.g. pounds of PCBs dredged
- Modeling physical and hydrodynamic modeling, performance modeling, food web modeling

Biological indicators

Food Web Tissue Sampled

Fish Composited Across Each of the 3 Reaches

White Sucker

3-5/Reach > 200 mm

Brown Bullhead > 10/reach > 250 mm

Spiders Tetragnathids

4 Reps per station >2 gm

Large Mouth Bass

3-5/Reach > 250 mm

Gizzard Shad

3-5/Reach > 180 mm

Macroinvertebrates

Pumpkinseed

3-5/reach > 80 mm

Emerald Shiner

2-3 reps >25 g/reach

Bluntnose Minnow

2-3 reps >25 g/reach

PCBs in water

Biological LOE's: COCs in Macroinvertebrates & Spiders

Biological LOE's: Small short lived fish

Biological LOE's: Higher trophic fish

Results Comet Assay

D ND

1200

DNA Damage in Ottawa R. bullheads by Reach and Year

Biological LOE: Macroinvertebrates Lacustuary Invertebrate Community Index (LICI)

Ottawa River 2007-2015

***BUI Beneficial Use Impairment**

Rivermile

Mean Lacustuary Invertebrate Community Index (LICI) scores

*Numbers at base of bars are the number of stations sampled.

Mean LICI scores (± 1 SE) by year (a). Data from 2007 collected by Ohio EPA.

Interaction plot showing the mean LICI score for DMU treatment Before and After the remediation (b).

Biological and Chemical LOE's: Trophic Level PCB Concentrations 2009 v 2013 & 2015

Summary of Different Trophic Level 1:1 Plot of 2009 v 2013 Concentrations

Pre-dredge total PCB concentration (ng/g wet)

Findings and conclusions

- Sediment concentrations decreased after remediation
- Water concentrations unchanged/slightly decreased after remediation
- Macroinvertebrates & Spider tissue concentrations showed little statistical change compared to pre-remedy condition
- Despite the large physical disruption associated with remediation (dredging) there was no decline in the LICI score.
- 2013 Gizzard shad and emerald shiners showed lower tissue concentrations compared to pre-dredging across the entire project area.
- Higher trophic level fish showed no statistical change compared to pre-dredging (Largemouth Bass, White Suckers, Bullhead, Pumpkinseed, & Bluntnose minnows)
- Brown bullhead showed a trend toward a decrease in DNA damage across all reaches from the 2011 high.
- Based on modeling performed during the design phase, it was anticipated that the long-term clean up goals would be met approximately 10 years (2020) after the completion of dredging activities

Biological lines of evidence

Current practice

- Fish tissue for human consumption
- Standard sediment tox. and bioacc. testing
- Benthic survey
- Histopathology, common endpoints for biota

Innovative (examples)

- Benthic body burden
- Short lived fish
- Bioaccumulation alternative biological and surrogate measures (Tenax, SPMEs, etc)
- Fish (IBI)/habitat quality/Genetic damage
- Benthic survey (e.g. L-ICI)
- Bivalve uptake
- Riparian indicators (avian, spiders, etc)
- SOP (performance based)/QAQC/Interlab comparisons
- Reference locations

Current

Chemical lines of evidence

Current practice

- Sediment chemistry surface & segmented core sampling
- Water Chemistry

Innovative (examples)

- Passive samplers (e.g., PEDs, SPMEs)
- Porewater (direct and passive)
- Groundwater intrusion
- Legacy contaminants versus CECs
- Rapid screening direct analysis techniques
- Qualitative level screening for additional contaminants (legacy and CECs)
- Advanced Chemical Forensics
- Common SOPs/QA

Physical lines of evidence

Current practices

- Single-beam Bathymetry
- Turbidity
- Sediment transport modeling

Innovative (examples)

- Grain size analyses of dredge materials and "residuals"
- Particle tracking
- Hydrodynamics & plume monitoring
- GW-surface water interactions
- Sediment traps for transport of sediment and COCs
- Multi-beam Bathymetry/side scan sonar
- Diver assisted probing and SPI camera for residuals

Current

Innovative

Methods

EPA & FWS Electroshocking

EPA Fyke Netting

Logged and processed

20 HDs/rep 2 reps/site 18 sites over 3 reaches

Deployed 6 weeks and processed in field

Time sorted to > 1gm wet wt

Fish

Methods Comet Assay to Measure Genotoxicity

Collect Blood and Liver in Field

Preserve samples in the field

Fluorescence microscopy image of Comet Assay blood cells

Measuring DNA damage parameters using image analysis

Methods Spiders

- Tetragnathid (longjaw spider)
 - riparian specialist
 - aquatic insect specialist
 - riparian vegetation and human structures

